Pressure-energy correlations in liquids. III. Statistical mechanics and thermodynamics of liquids with hidden scale invariance.

نویسندگان

  • Thomas B Schrøder
  • Nicholas P Bailey
  • Ulf R Pedersen
  • Nicoletta Gnan
  • Jeppe C Dyre
چکیده

In this third paper of the series, which started with Bailey et al. [J. Chem. Phys. 129, 184507 (2008); ibid. 129, 184508 (2008)], we continue the development of the theoretical understanding of strongly correlating liquids--those whose instantaneous potential energy and virial are more than 90% correlated in their thermal equilibrium fluctuations at constant volume. The existence of such liquids was detailed in previous work, which identified them, based on computer simulations, as a large class of liquids, including van der Waals liquids but not, e.g., hydrogen-bonded liquids. We here discuss the following: (1) the scaling properties of inverse power-law and extended inverse power-law potentials (the latter includes a linear term that "hides" the approximate scale invariance); (2) results from computer simulations of molecular models concerning out-of-equilibrium conditions; (3) ensemble dependence of the virial/potential-energy correlation coefficient; (4) connection to the Grüneisen parameter; and (5) interpretation of strong correlations in terms of the energy-bond formalism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hidden scale invariance in molecular van der Waals liquids: a simulation study.

Results from molecular dynamics simulations of two viscous molecular model liquids--the Lewis-Wahnström model of orthoterphenyl and an asymmetric dumbbell model--are reported. We demonstrate that the liquids have a "hidden" approximate scale invariance: equilibrium potential energy fluctuations are accurately described by inverse power-law (IPL) potentials, the radial distribution functions are...

متن کامل

Fractal Liquids

We introduce fractal liquids by generalizing classical liquids of integer dimensions d = 1, 2, 3 to a fractal dimension df . The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same non-integer dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid drop...

متن کامل

Classical Liquids in Fractal Dimension.

We introduce fractal liquids by generalizing classical liquids of integer dimensions d=1,2,3 to a noninteger dimension dl. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined ...

متن کامل

Isomorphs, hidden scale invariance, and quasiuniversality.

This paper first establishes an approximate scaling property of the potential-energy function of a classical liquid with good isomorphs (a Roskilde-simple liquid). This "pseudohomogeneous" property makes explicit that-and in which sense-such a system has a hidden scale invariance. The second part of the paper gives a potential-energy formulation of the quasiuniversality of monatomic Roskilde-si...

متن کامل

Pool boiling heat transfer coefficient of pure liquids using dimensional analysis

The pool boiling heat transfer coefficient of pure liquids were experimentally measured on a horizontal bar heater at atmospheric pressure. These measurements were conducted for more than three hundred data in thermal currents up to 350 kW.m-2. Original correlations and the unique effect of these correlations on experimental data were discussed briefly. According to the analysis, a new empirica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 131 23  شماره 

صفحات  -

تاریخ انتشار 2009